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Abstract
Dynamic effects, such as steering and screening during deposition, on epitaxial
growth (Cu/Cu(001)) were studied by kinetic Monte Carlo simulations that
incorporate molecular dynamics simulations to account for the interaction
between the deposited and substrate atoms. Three characteristics of the
surface morphology with grazing angle deposition were noted: enhanced
surface roughness, an asymmetric mound, and asymmetric slopes of the mound
sides. Regarding their dependence on both deposition angle and substrate
temperature, reasonable agreement was found between the simulation and
previous experimental results. The growth characteristics of grazing angle
deposition were mainly caused by inhomogeneous distribution of deposition
flux due to the steering and screening effects, with the steering effects playing
the dominant role. It was also noted in the present simulation that each side of a
mound was composed of various local facets instead of a selected facet. Thus,
slope selection does not necessarily signify facet selection.

1. Introduction

For the tailored growth of a structure on a substrate both energetic parameters, such as surface
and interface energies, and kinetic parameters, such as diffusion barriers, have been considered.
However, the variables related to the dynamics of the deposited atoms, other than the deposition
flux, have not been seriously considered. Using spot profile analysis of low energy electron
diffraction (SPA-LEED), Dijken et al [1] recently observed that the Cu islands formed on
Cu(001) displayed rectangular symmetry, as opposed to the square symmetry of the substrate
when a 0.5 monolayer (ML) of Cu was deposited at a deposition angle (θ ) of 80◦ from the
surface normal. They suggested a model in which the interaction between the deposited
and substrate atoms directs the deposited atom—the so-called steering effect—resulting in an
inhomogeneous deposition flux that in turn forms rectangular islands.

In our previous study [2], kinetic Monte Carlo (KMC) simulations in conjunction with
molecular dynamics (MD) simulation of the deposited atoms confirmed this hypothetical model
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in the submonolayer regime. Since steering effects are unavoidable during deposition, they
affect thin film growth to some degree, even for normal deposition [3, 4] and for different
substrates such as Ag(110) [5]. It has been also shown that deposition dynamics are a cause
of unstable growth of thin films on a vicinal surface [6]. These studies have demonstrated that
the dynamic parameters involved in the deposition process, which have been largely ignored in
previous studies, exert a considerable influence on thin film growth. The instability induced by
steering effects was also theoretically predicted by Raible et al [7].

Dijken et al [8] observed that, in the growth of a thicker film (40 ML) with θ = 80◦,
the surface is much rougher than that at θ = 0◦. It has also been observed that the slope of
the mound facing the deposition direction is much steeper than on the side shadowed from
deposition [8]. Although a qualitative model has been suggested to relate the experimental
results to the inhomogeneous deposition flux due to the steering and screening effects [9], few
corroborative simulation studies have been conducted.

In the present study, kinetic Monte Carlo (KMC) simulations were performed in
conjunction with MD simulations to investigate the effects of the dynamic processes on the
growth of thin films beyond the submonolayer regime. The principal results are as follows.
Roughness increased substantially with increasing deposition angle. The mound formed during
thick film growth had, for the most part, rectangular symmetry with sides elongated in the
direction perpendicular to the deposition direction. (Some exceptions, such as the formation of
square mounds and ripple structure, will also be discussed.) The slopes of the illuminated and
shadowed sides of the mound differed significantly, which is consistent with the experimental
results [8]. These three characteristic morphological features are attributable to inhomogeneous
distribution of deposition flux due mainly to steering rather than screening effects. In addition,
we found that each side of a mound was formed of various local facets instead of a selected
facet, and the observed dependence of (mean) mound slope on growth conditions is due to
variations in the relative population of the local facets.

2. Simulation schemes

A KMC simulation was utilized to study thin film growth by deposition. In most of the previous
KMC simulations the deposition process involved randomly positioning atoms at arbitrary
adsorption sites. In the present study, however, if the deposition process was selected via normal
KMC simulation, then a MD routine was applied to simulate the trajectory of a deposited atom,
which was determined by the interaction between the deposited and substrate atoms [10].

Details of the simulation are as follows. The Cu(001) substrate lies on the xy-plane (at
z = 0) with the x-axis lying parallel to the [110] direction. In the process, deposition begins at
a height of 11az above the highest position of the growing film and deposited atoms are incident
along the x-axis. Here, az is the interlayer spacing of Cu(001).

The interaction between a deposited atom and substrate atoms is calculated by summing
pairwise Lennard-Jones potentials: U(r) = 4D[(σ/r)12 − (σ/r)6], where D = 0.4093 eV,
σ = 2.338 Å, [11] and r is the distance between two atoms. The initial kinetic energy of
the deposited atom is set to 0.15 eV, which corresponds to the melting temperature of copper.
During each deposition step, all substrate atoms are assumed to be frozen in their positions.
During each deposition, the incident atom approaches the substrate as dictated by MD and
stops just before it feels the repulsive force from the substrate atoms. The distance from the
terminal position to the encountering substrate atom is usually around 0.9 ann (ann is the nearest
neighbour distance). Then, the atom is positioned from the terminal position to the nearest
four-fold hollow site, since epitaxial (pseudo-morphic) growth is observed experimentally on
Cu(001) [1].

2



J. Phys.: Condens. Matter 19 (2007) 486001 J Seo et al

Figure 1. Diffusion processes considered in the simulation. Inset: neighbouring atoms of a moving
atom considered in the simulation.

Table 1. Diffusion barriers and parameters adopted in our simulation. The same notation is used
for each diffusion process as in figure 1.

Type of diffusion Diffusion barrier

E1 0.42 eV
E2 0.36 eV
E3 0.46 eV
E4 0.62 eV
E5 0.68 eV
E6 0.18 eV
ES barrier (ES) 0.07 eV (0.42 + 0.07 eV)
ES barrier (kink site) 0.035 eV
Jump frequency (ν0) 3.6 × 1012

Deposition rate (F0) 0.25 ML min−1

For an atom depositing near the step edge, four-fold hollow sites defined by at least two
atoms forming the step edge were allowed for adsorption, but the atom was then funnelled down
to a four-fold hollow site in the lower terrace [12]. Although transient mobility of deposited
atom may affect uphill (vice versa downhill) flux near step edge [13], such effects are not taken
into account in the present simulation. For all simulations, a deposition rate of 0.25 ML min−1,
the experimental one of Dijken et al [1], was used.

Between two sequential deposition processes, a KMC simulation was performed to
simulate the diffusion of atoms on the substrate. In the KMC simulation, only diffusion into
empty fcc lattice sites is allowed; no exchange diffusion is permitted [14]. The simulated
system is composed of 400 × 400 atomic lattice sites on the fcc(001) surface.

We used 32 different barriers corresponding to the 25 configurations determined by the
existence or absence of atoms in the five sites around a moving atom, as depicted in the inset
of figure 1. The barriers were divided into six groups according to their magnitude to reduce
computing time; barrier values were adopted from Furman and co-workers [15, 16]. In addition
to these six barrier values, five barriers accompanying the Ehrlich–Schwoebel barrier were also
considered. The step Ehrlich–Schwoebel (ES) and the kink ES barrier were 0.07 and 0.035 eV,
respectively. The principal diffusion processes are depicted in figure 1 and their barrier values
listed in table 1.

Note that the barrier (E2) for diffusion along the step edge was set at 0.36 eV in the
present simulation to save computation time. Although no consensus exists on the value of
the E2 barrier, the employed value is larger than the reported values of 0.2–0.3 eV [14, 16].
We investigated the dependence of surface morphology, roughness (figure 2(a)) and mean
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Figure 2. Roughness and the mean slopes of three sides of the mound versus coverage for various
E2 barriers. (a) Roughness and the mean mound slopes of (b) P-side, i.e. two sides of the mound
perpendicular to the deposition direction, (c) IL-side, i.e. the side facing the deposition direction,
and (d) SH-side, i.e. the shadowed (or back) side of the mound in the deposition direction. The
deposition angle is 80◦ at T = 250 K.

mound slope (figures 2((b)–(d))) on E2. Morphology showed no noticeable dependence on
E2 down to 0.26 eV; however, for E2 = 0.24 eV, roughness decreased significantly and the
slope differed from that obtained at higher E2 values. In our simulation with E2 = 0.36 eV,
most experimentally observed features were well reproduced. Hence, the E2 does not seem
that much smaller, even if it is the case, than at 0.26 eV.

The surface roughness was determined by the root-mean-square fluctuation in surface
height around the mean height. The mound radius was determined by the first zero of the
height–height correlation function G(�r) = 〈h(�r )h(0)〉 − 〈h(0)〉2. All presented results were
obtained from the average of 20 simulations under identical conditions. Unless otherwise noted,
the distance in a plane is in units of the nearest-neighbour distance ann and the distance in the
vertical direction is in units of az . Here, ann is a/

√
2 and the interlayer distance is az = a/2,

where a is the lattice constant of Cu.
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Figure 3. Surface roughness as a function of coverage and deposition angle. Substrate temperature:
250 K. Inset: roughness as a function of the deposition angle at a coverage of 40 ML. The error bar
for each data point is located within each symbol.

3. Results

3.1. Roughness

Figure 3 shows surface roughness as a function of coverage (�), when Cu atoms are deposited
at various deposition angles on Cu(001) at 250 K. The most notable feature is that, at the same
coverage, the surface becomes rougher as the deposition angle increases, as also observed
experimentally [8]. As � increases, the difference in roughness between deposition at the
grazing angle and normal deposition (θ = 0◦) increases. At � = 40 MLs, the roughness with
θ = 85◦ is about four times greater than normal deposition (inset of figure 3).

3.2. Mound radius

Figure 4 shows the mound radius of a 40 ML thick Cu film grown on Cu(001) at 250 K
under the same growth conditions described by Dijken et al [1, 8] as a function of θ . When
atoms are deposited in the normal direction (θ = 0◦), square mounds are formed with the
same four-fold symmetry as the substrate (in this case, the open and solid symbols overlap in
figure 4). However, as θ increased, the aspect ratio of the rectangular mounds also increased,
with elongated sides along the y-axis and reaching a maximum at θ = 80◦ (the x- and y-
axes are defined in figure 1). In contrast, at θ = 85◦, the aspect ratio decreased back to
approximately 1.

Dijken et al [8] reported a ripple-like structure at θ = 80◦ for � = 40 ML, and re-entrant
behaviour from the ripple-like structure to a mound structure was observed at θ = 85◦. In
the present simulation, a similar re-entrant behaviour from a rectangular to a square mound
structure as θ increased from 80◦ to 85◦ was also observed, although the rectangular mounds
did not fully develop into ripple-like structures at θ = 80◦.
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Figure 4. Mound radius as a function of the deposition angle at a coverage of 40 ML. Substrate
temperature 250 K. Open and solid circles signify the radii along the x- and y-axes, respectively.

3.3. Mound slope

To characterize the mean slopes of the mounds, we investigated the local slope at each step on
each side of the mound, defined as the step height divided by the width of the adjacent lower
terrace. Most steps on the sides of the mounds are one atomic layer in height. Thus, if the
width of a lower terrace adjacent to a step is 0.5 ann, then the local slope is az/0.5 ann, which
corresponds to the slope of the {1, 1, 1}-facet on the fcc(001) surface. For steps with terrace
widths of 1.5 and 2.5ann, the corresponding local slopes are those of the {1, 1, 3}- and {1, 1, 5}-
facets, respectively. Hereafter, the step-terrace structure with a local slope of the {1, 1, j} facet
will be referred to as the local{1, 1, j}-facet.

In our simulation, we found that various types of local facets coexist on each side of the
mound. Figure 5 shows the distribution of the local facets as a function of coverage for thin
films grown by deposition at θ = 0◦ and a substrate temperature (T ) of 250 K. The mean
slope increased with increasing � (inset of figure 5; note that the {1, 1, 1}-facet is the steepest).
At � = 100 ML, the mean terrace width reached 2.13ann, close to that of the {1, 1, 5}-facet;
however, the relative population of the local {1, 1, j}-facet was 11% ( j = 1), 43% ( j = 3),
27% ( j = 5), 13% ( j = 7) and 7% ( j = 9) at this coverage (the proportion of local facets
with slopes less than that of the {1, 1, 11}-facet was negligible). Therefore, even though the
mean slope of the sides converges to that of the {1, 1, 5}-facet, the actual relative population of
local {1, 1, 5}-facets was only 27% and the rest of the sides were composed of different local
facets with various local slopes.

Figure 6 shows the distribution of local facets on each side of the mounds (IL, illuminated;
SH, shadowed; P, perpendicular) after depositing 40 ML at 250 K and at various deposition
angles. Distributions of the local facets were similar for the three sides of the mounds for
θ < 50◦; however, the distributions varied as the deposition angle increased. For � = 40 ML
and θ = 80◦, 77% of the IL-sides were composed of local {1, 1, 1}-facets, but only 23% of the
SH-side was made up of local {1, 1, 1}-facets; thus, its mean slope was less steep than that of
the IL-side.

Dijken et al [8] investigated the mean slopes of the sides of a mound formed during
the growth of a 40 ML thick Cu film on Cu(001) at 250 K using SPA-LEED with varying
deposition angles. Figure 7 compares the experimental results with our simulation, i.e. mean
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Figure 5. Relative population of local facets that make up the sides of the mounds formed by normal
deposition (θ = 0◦) at 250 K. Inset: average slope of the mounds as a function of coverage.

Figure 6. Relative population of local facets that make up the sides of the mounds formed by
depositing 40 ML at 250 K and at various deposition angles. (a) P-side: two sides of a mound
perpendicular to the deposition direction. (b) IL-side: the side facing the deposition direction.
(c) SH-side: the shadowed (or back) side of the mound in the deposition direction.

facet orientation. The simulation reproduced the experimental results for all three sides of the
mound reasonably well.

7



J. Phys.: Condens. Matter 19 (2007) 486001 J Seo et al

Figure 7. Average facet orientation of mounds for a 40 ML thick Cu film grown on Cu(001) at
250 K as a function of θ for the (a) SH-, (b) IL- and (c) P-sides of the mounds. Filled and open
symbols denote experimental [8] and present simulation results, respectively.

4. Discussion

4.1. Inhomogeneous deposition flux

In the previous section, we noted that film roughness and mound shape are dependent on
dynamic variables, such as the deposition angle. Such angular dependence can be attributed
to deposition dynamics, including the steering of the trajectory of the deposited atom due to
its interaction with substrate atoms and the screening effects of the deposited atoms due to
the geometrical structure of the substrate. Both effects cause inhomogeneous distribution of
deposition flux, making the growth of thin films sensitive to deposition conditions.

The deposition flux distribution was investigated by a MD simulation on an eight-layer-
high mound of 60 × 60 base area, surrounded by {1, 1, 5}-facets. Figure 8(a) shows the
deposition flux over the mound in a grey scale for θ = 80◦. Figure 8(b) shows the deposition
flux along a line passing through the centre of the mound along the x-axis. It shows strong
asymmetry, that is, the deposition flux on the IL-side is two to four times larger than the average
deposition flux, while that on the SH-side is only 10–50% of the average. In particular, the
enhancement of the flux near the IL-side edge of the top terrace is pronounced. The simulation
with the mounds surrounded by the different facets showed the same trend, i.e. enhanced
deposition flux on the IL-side and reduced deposition flux on the SH-side.

Such inhomogeneous distribution of deposition flux gives rise to different growth rates on
either side; thus, the film is rougher than the film grown under normal deposition conditions
(figure 3). In particular, the enhanced deposition flux near the front edge of the top terrace
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Figure 8. Deposition flux distribution calculated by a MD simulation. Atoms were deposited at a
grazing angle of 80◦ on an eight-layer-high mound surrounded by (1, 1, 5)-facets with reference to
(a), (b) both the steering and screening effect, and (c), (d) the screening effect only. (a), (c) The
deposition flux distribution is shown as a grey scale, where a brighter tone indicates a higher flux.
(b), (d) Deposition flux distribution on a line through the centre of the mound along the x-axis.
The ordinate is the percentage deposition flux relative to the average deposition flux. The mound is
depicted as grey circles.

increased the destabilizing current biased by the ES barrier and significantly roughened the
surface. (See the discussion in the following subsection for further details.)

The asymmetric slopes of the mounds observed for θ > 50◦ (figure 6) can also be
explained by inhomogeneous distribution of deposition flux in the following terms. First,
the higher deposition flux on the IL-side compared to the SH-side is equivalent to a growth
environment with a lower growth temperature on the IL-side than on the SH-side. Thus, the
terrace size on the IL-side is narrower than that on the SH-side, or equivalently, the slope on
the IL-side is steeper than that on the SH-side, as observed in a previous experiment [8].

In addition, the flux distribution on the top terrace strengthened asymmetric slope
formation. Figure 8(b) shows that the deposition flux near the edge toward the IL-side is much
higher than that near the opposite edge, which resulted in an increased density of islands on the
top terrace near the edge of the IL-side. The sequential formation of islands on the top terrace,
preferentially close to the edge, makes mounds having steps with a narrower terrace width or
steeper slope on the IL-side than on the SH-side.

4.2. Steering versus screening effects

As a film becomes thicker, in addition to the steering effects the geometric screening effects also
play an important role. To study the contribution of the individual dynamic effect on thin film
growth, another set of growth simulations was performed, taking only the geometric screening
effects into account. In this simulation, the trajectory of the deposited atom is a straight line,
determined by the initial position and velocity of the atom. All other growth conditions are as
outlined in previous subsections.

9
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Figure 9. Simulation results with θ = 80◦ and � = 40 ML. (a) Roughness as a function of
temperature for (+) random deposition (NSS), (open circles) deposition with screening effects
alone (SCR) and (solid circles) deposition with both screening and steering effects (SCR + STR).
(b) Average facet orientation for the SH-side (circle) and the IL-side (square). Open (solid) symbols
for SCR (SCR + STR). Solid and grey circle (square) is an experimental values for the SH(IL)-side.
Under some experimental conditions, when two facets were observed, the plotted one is the mean
of the two.

Figure 9(a) shows roughness evolution as a function of temperature for three different
cases: assuming no steering and screening effects (NSS) or random deposition, with geometric
screening effects only (SCR) and normal simulation taking all dynamic effects, that is, both
steering and screening effects (SCR + STR), into consideration. When the dynamic effects
were not taken into account (NSS), then roughness displayed a bell-shaped temperature
dependence. However, when the screening effects were included, the roughness of the film
increased slightly as the substrate temperature decreased below ∼200 K. In sharp contrast, the
roughness was dramatically enhanced if the steering effects were included. This indicates that
the steering rather than the screening effects plays a dominant role in the growth of thin films.

The origin of the difference in the roughness between the two cases, SCR and SCR + STR,
lies in their different flux distributions, as shown in figure 8. The most notable difference was
found in the flux on the top terrace. In figures 8(a) and (b), the flux distribution for SCR + STR
showed clear flux enhancement near the front edge of the top terrace, as well as on the IL-side.

10
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No such enhancement of flux on the top terrace was found for SCR, as shown in figures 8(c)
and (d). The steering effects induced a vertical flux redistribution in addition to the lateral
redistribution. Thus, the relaxation of the steering effects should be less efficient than that of
the screening effects because the former is achieved by inefficient interlayer diffusion over the
ES barrier, while the latter occurs via relatively efficient in-plane diffusion. Therefore, the
increased atom density on the top layer accelerated the roughening of the film, which differed
from the SCR case.

In figure 9(b), the mean slopes for the IL- and SH-sides are shown as a function of growth
temperature for both SCR and SCR + STR. The mean slopes of both sides are steeper for
SCR + STR than for SCR. In addition, the temperature dependence of the mean slopes differed
for the two cases. For SCR, the difference in the mean slope between the IL- and SH-sides
decreased with increasing temperature. In contrast, for SCR + STR, the difference in the mean
slopes increased with temperature. Compared to the experimental results in figure 9(b), we
found that the average facet orientations for SCR + STR reproduced the experimental values
better than those for SCR. This observation also indicated that the steering effects steepened
the slopes and played a major role in shaping the mounds.

In short, for thin film growth at the grazing deposition angle, enhanced surface roughness
and the difference in slope between the IL- and SH-sides of mounds resulted mainly from
steering rather than screening effects (figure 9). Noting that the main difference between
steering and screening effects is enhanced deposition flux near the front edge of the top
terrace, the observed characteristics of films grown at the grazing deposition angle are largely
determined by the growth characteristics of the top layer as the growth front.

4.3. Ripple-like structure

Dijken et al reported that the mound structure is maintained for θ < 70◦ during the growth of
40 ML of Cu on Cu(001) at 250 K. When θ reached 80◦, the mound structure was transformed
into a ripple structure along the y-direction. When θ reached 85◦, however, the mound structure
recovered. As shown in figure 4, the present simulation reproduced similar results. For
SCR + STR at 250 K, we observe an increase in the aspect ratio with the long side along the
y-axis as θ approached 80◦ and then the decrease of the aspect ratio at θ = 85◦ (figure 4).
However, even at θ = 80◦ where the aspect ratio is maximum, the mound structure was
still retained, since the zero of G(�r) or the mound radius is well-defined in both directions
(figure 10(a)). This is not in agreement with the experimental result. Only if the simulation
temperature is lowered below 220 K is a ripple structure is found upon deposition of a 40 ML
film at θ = 80◦, judging from the absence of zero of G(�r) (figure 10(b)).

Shim and Amar [17] reproduced the ripple structure with a simulation that considered
screening effects only. We reproduced most of their results only by considering screening
effects. However, the ripple-like structure was observed only at a substrate temperature below
220 K.4 The substrate temperature affects not only the diffusion kinetics but also deposition
flux distribution via the shape and density of the mounds. Hence, it is not clear yet what the
most relevant process for the growth of the ripple structure is.

5. Summary and conclusion

We performed a hybrid simulation incorporating MD and KMC simulations to study thin film
growth by grazing angle deposition. We observed a notable increase in surface roughness

4 Since the deposition temperature is not given and the growth condition is not clearly described in the paper of Shim
and Amar [17], no comparison with their results is allowed.
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Figure 10. Height–height correlation function at a coverage of 40 ML: (a) T = 250 K and θ = 80◦;
(b) T < 220 K and θ = 80◦. Continuous (dashed) line denotes the correlation function along the
x- (y-)axis.

and asymmetry in both mound shape and slope compared to thin film growth via normal
deposition. The results were in good agreement with previous experimental observations [8],
even semi-quantitatively. The present simulation, although based on a simple premise, appears
to reflect the most critical characteristics of the deposition process in relation to thin film
growth. The ripple-like structure is, however, not reproduced in the present simulation under
the experimental condition. Further works from both experimental and theoretical sides are
required to resolve the discrepancy5.

We found that the structural features of the films grown by grazing angle deposition are
mainly attributable to steering rather than screening effects. In particular, the inhomogeneous
deposition flux on the top terrace, induced by the steering effects, is the most influential factor.

An additional interesting observation is that the sides of a mound are not composed of a
selected facet. Instead, a variety of local facets coexist and the selected mound slope observed
experimentally represents their mean slope only. Therefore, slope selection does not necessarily
signify facet selection.
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